Ultraproducts in Banach space theory.
Let φ(t) be a positive increasing function and let Ê be an arbitrary sequence space, rearrangement-invariant with respect to the atomic measure µ(n) = 1/n. Let {an*} mean the decreasing rearrangement of a sequence {|an|}. A sequence space lφ,E with symmetric (quasi)norm || {φ(n)an*} ||Ê is called ultrasymmetric, because it is not only intermediate but also interpolation between the corresponding Lorentz and Marcinkiewicz spaces Λφ and Mφ. We study properties of the spaces lφ,E for all admissible...
In the first part of the paper we prove some new result improving all those already known about the equivalence of the nonexistence of a projection (of any norm) onto the space of compact operators and the containment of in the same space of compact operators. Then we show several results implying that the space of compact operators is uncomplemented by norm one projections in larger spaces of operators. The paper ends with a list of questions naturally rising from old results and the results...
Throughout this note, whenever K is a compact space C(K) denotes the Banach space of continuous functions on K endowed with the sup norm. Though it is well known that every infinite dimensional Banach space contains uncomplemented subspaces, things may be different when only C(K) spaces are considered. For instance, every copy of l∞ = C(BN) is complemented wherever it is found. In [5] Pelzcynski found: Theorem 1. Let K be a compact metric space. If a separable Banach space X contains a subspace...