Previous Page 19

Displaying 361 – 371 of 371

Showing per page

Asplund Functions and Projectional Resolutions of the Identity

Zemek, Martin (2000)

Serdica Mathematical Journal

*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.We further develop the theory of the so called Asplund functions, recently introduced and studied by W. K. Tang. Let f be an Asplund function on a Banach space X. We prove that (i) the subspace Y := sp ∂f(X) has a projectional resolution of the identity, and that (ii) if X is weakly Lindel¨of determined, then X admits a projectional...

Asplund spaces

Namioka, I. (1976)

Abstracta. 4th Winter School on Abstract Analysis

Averages of uniformly continuous retractions

A. Jiménez-Vargas, J. Mena-Jurado, R. Nahum, J. Navarro-Pascual (1999)

Studia Mathematica

Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly retractions of B onto S. Moreover, for every 0≤ r < 1, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.

Currently displaying 361 – 371 of 371

Previous Page 19