Displaying 1861 – 1880 of 3166

Showing per page

On the principle of local reflexivity

Ehrhard Behrends (1991)

Studia Mathematica

We prove a version of the local reflexivity theorem which is, in a sense, the most general one: our main theorem characterizes the conditions which can be imposed additionally on the usual local reflexivity map provided that these conditions are of a certain general type. It is then shown how known and new local reflexivity theorems can be derived. In particular, the compatibility of the local reflexivity map with subspaces and operators is investigated.

On the quasi-weak drop property

J. H. Qiu (2002)

Studia Mathematica

A new drop property, the quasi-weak drop property, is introduced. Using streaming sequences introduced by Rolewicz, a characterisation of the quasi-weak drop property is given for closed bounded convex sets in a Fréchet space. From this, it is shown that the quasi-weak drop property is equivalent to weak compactness. Thus a Fréchet space is reflexive if and only if every closed bounded convex set in the space has the quasi-weak drop property.

On the Rademacher maximal function

Mikko Kemppainen (2011)

Studia Mathematica

This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The L p -boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to σ-finite measure spaces with filtrations and the L p -boundedness is shown not to depend on the underlying measure space or the filtration. Martingale techniques...

On the randomized complexity of Banach space valued integration

Stefan Heinrich, Aicke Hinrichs (2014)

Studia Mathematica

We study the complexity of Banach space valued integration in the randomized setting. We are concerned with r times continuously differentiable functions on the d-dimensional unit cube Q, with values in a Banach space X, and investigate the relation of the optimal convergence rate to the geometry of X. It turns out that the nth minimal errors are bounded by c n - r / d - 1 + 1 / p if and only if X is of equal norm type p.

On the range of the derivative of a real-valued function with bounded support

T. Gaspari (2002)

Studia Mathematica

We study the set f’(X) = f’(x): x ∈ X when f:X → ℝ is a differentiable bump. We first prove that for any C²-smooth bump f: ℝ² → ℝ the range of the derivative of f must be the closure of its interior. Next we show that if X is an infinite-dimensional separable Banach space with a C p -smooth bump b:X → ℝ such that | | b ( p ) | | is finite, then any connected open subset of X* containing 0 is the range of the derivative of a C p -smooth bump. We also study the finite-dimensional case which is quite different. Finally,...

On the representation of uncountable symmetric basic sets and its applications

Francisco Hernandez, Stanimir Troyanski (1993)

Studia Mathematica

It is shown that every uncountable symmetric basic set in an F-space with a symmetric basis is equivalent to a basic set generated by one vector. We apply this result to investigate the structure of uncountable symmetric basic sets in Orlicz and Lorentz spaces.

Currently displaying 1861 – 1880 of 3166