Displaying 321 – 340 of 399

Showing per page

The inclusion theorem for multiple summing operators

David Pérez-García (2004)

Studia Mathematica

We prove that, for 1 ≤ p ≤ q < 2, each multiple p-summing multilinear operator between Banach spaces is also q-summing. We also give an improvement of this result for an image space of cotype 2. As a consequence, we obtain a characterization of Hilbert-Schmidt multilinear operators similar to the linear one given by A. Pełczyński in 1967. We also give a multilinear generalization of Grothendieck's Theorem for GT spaces.

The Lebesgue Monotone Convergence Theorem

Noboru Endou, Keiko Narita, Yasunari Shidama (2008)

Formalized Mathematics

In this article we prove the Monotone Convergence Theorem [16].MML identifier: MESFUNC9, version: 7.8.10 4.100.1011

The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces

Roman Lávička (1998)

Commentationes Mathematicae Universitatis Carolinae

We shall show that every differential operator of 2-nd order in a real separable Hilbert space can be decomposed into a regular and an irregular operator. Then we shall characterize irregular operators and differential operators satisfying the maximum principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular differential operators satisfying the maximum principle.

The Minlos lemma for positive-definite functions on additive subgroups of n

W. Banaszczyk (1997)

Studia Mathematica

Let H be a real Hilbert space. It is well known that a positive-definite function φ on H is the Fourier transform of a Radon measure on the dual space if (and only if) φ is continuous in the Sazonov topology (resp. the Gross topology) on H. Let G be an additive subgroup of H and let G p c (resp. G b ) be the character group endowed with the topology of uniform convergence on precompact (resp. bounded) subsets of G. It is proved that if a positive-definite function φ on G is continuous in the Gross topology,...

The n -dual space of the space of p -summable sequences

Yosafat E. P. Pangalela, Hendra Gunawan (2013)

Mathematica Bohemica

In the theory of normed spaces, we have the concept of bounded linear functionals and dual spaces. Now, given an n -normed space, we are interested in bounded multilinear n -functionals and n -dual spaces. The concept of bounded multilinear n -functionals on an n -normed space was initially intoduced by White (1969), and studied further by Batkunde et al., and Gozali et al. (2010). In this paper, we revisit the definition of bounded multilinear n -functionals, introduce the concept of n -dual spaces, and...

The Orthogonal Projection and the Riesz Representation Theorem

Keiko Narita, Noboru Endou, Yasunari Shidama (2015)

Formalized Mathematics

In this article, the orthogonal projection and the Riesz representation theorem are mainly formalized. In the first section, we defined the norm of elements on real Hilbert spaces, and defined Mizar functor RUSp2RNSp, real normed spaces as real Hilbert spaces. By this definition, we regarded sequences of real Hilbert spaces as sequences of real normed spaces, and proved some properties of real Hilbert spaces. Furthermore, we defined the continuity and the Lipschitz the continuity of functionals...

Topological groups and convex sets homeomorphic to non-separable Hilbert spaces

Taras Banakh, Igor Zarichnyy (2008)

Open Mathematics

Let X be a topological group or a convex set in a linear metric space. We prove that X is homeomorphic to (a manifold modeled on) an infinite-dimensional Hilbert space if and only if X is a completely metrizable absolute (neighborhood) retract with ω-LFAP, the countable locally finite approximation property. The latter means that for any open cover 𝒰 of X there is a sequence of maps (f n: X → X)nεgw such that each f n is 𝒰 -near to the identity map of X and the family f n(X)n∈ω is locally finite...

Currently displaying 321 – 340 of 399