Strict topologies in non-archimedean function spaces.
Let D (resp. D*) be the subspace of C = C([0,1], R) consisting of differentiable functions (resp. of functions differentiable at the one point at least). We give topological characterizations of the pairs (C, D) and (C, D*) and use them to give some examples of spaces homeomorphic to CDor to CD*.
On étudie les convexes compacts , tels que pour toute partie de , l’ensemble des fonctions affines continues sur , comprises entre 0 et 1, et nulles sur , ait un plus grand élément. On caractérise ces convexes compacts comme ceux dont des quotients affines convenables sont des chapeaux universels de cônes à base compacte. On a une “complémentation naturelle” sur le treillis des faces exposés de , et des liens remarquables entre ce treillis et l’espace des fonctions affines continues sur .
Soient un e.v.t., un sous-espace de , une fonction analytique de dans , telle que contienne l’image de . On cherche les valeurs que peut prendre en zéro puis on fait la liaison entre ce problème et un problème de prolongement analytique.
We show that if Ω is an open subset of ℝ², then the surjectivity of a partial differential operator P(D) on the space of ultradistributions of Beurling type is equivalent to the surjectivity of P(D) on .
Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.
A Fréchet space with a sequence of generating seminorms is called tame if there exists an increasing function σ: ℕ → ℕ such that for every continuous linear operator T from into itself, there exist N₀ and C > 0 such that ∀x ∈ , n ≥ N₀. This property does not depend upon the choice of the fundamental system of seminorms for and is a property of the Fréchet space . In this paper we investigate tameness in the Fréchet spaces (M) of analytic functions on Stein manifolds M equipped with the compact-open...