The search session has expired. Please query the service again.
We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces and for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.
Let denote the non-quasianalytic class of Beurling type on an open set Ω in . For the surjectivity of the convolution operator is characterized by various conditions, e.g. in terms of a convexity property of the pair and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator between ultradistributions of Roumieu type whenever . These...
Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.
Soit un espace localement compact. Tout opérateur dissipatif de domaine dense dans est limite d’opérateurs dissipatifs bornés. Ce résultat permet, dans le cas où est un espace homogène, de démontrer que tout opérateur dissipatif, de domaine dense et invariant sur se prolonge en le générateur infinitésimal d’un semi-groupe à contraction invariant sur .À tout opérateur vérifiant le principe du maximum positif sur et de domaine assez riche, on associe un opérateur bilinéaire , appelé...
Currently displaying 21 –
32 of
32