Previous Page 3

Displaying 41 – 45 of 45

Showing per page

Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator

S. Bloom, R. Kerman (1994)

Studia Mathematica

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies Δ 2 . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.

Well-posedness for a class of non-Newtonian fluids with general growth conditions

Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska, Andrzej Warzyński (2009)

Banach Center Publications

The paper concerns uniqueness of weak solutions to non-Newtonian fluids with nonstandard growth conditions for the Cauchy stress tensor. We recall the results on existence of weak solutions and additionally provide the proof of existence of measure-valued solutions. Motivated by the fluids of strongly inhomogeneous behaviour and having the property of rapid shear thickening we observe that the described situation cannot be captured by power-law-type rheology. We describe the growth conditions with...

Wiener amalgam spaces with respect to quasi-Banach spaces

Holger Rauhut (2007)

Colloquium Mathematicae

We generalize the theory of Wiener amalgam spaces on locally compact groups to quasi-Banach spaces. As a main result we provide convolution relations for such spaces. Also we weaken the technical assumption that the global component is invariant under right translations, which is new even for the classical Banach space case. To illustrate our theory we discuss in detail an example on the ax+b group.

Currently displaying 41 – 45 of 45

Previous Page 3