Displaying 2061 – 2080 of 4027

Showing per page

On minimality and lp-complemented subspaces of Orlicz function spaces.

Francisco L. Hernández, Baltasar Rodríguez Salinas (1989)

Revista Matemática de la Universidad Complutense de Madrid

Several properties of the class of minimal Orlicz function spaces LF are described. In particular, an explicitly defined class of non-trivial minimal functions is shown, which provides concrete examples of Orlicz spaces without complemented copies of F-spaces.

On monotone-like mappings in Orlicz-Sobolev spaces

Vesa Mustonen, Matti Tienari (1999)

Mathematica Bohemica

We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class ( S m ) as a generalization of ( S + ) and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.

On multilinear mappings of nuclear type.

Mário C. Matos (1993)

Revista Matemática de la Universidad Complutense de Madrid

The space of multilinear mappings of nuclear type (s;r1,...,rn) between Banach spaces is considered, some of its properties are described (including the relationship with tensor products) and its topological dual is characterized as a Banach space of absolutely summing mappings.

On multiplication in spaces of continuous functions

Marek Balcerzak, Aleksander Maliszewski (2011)

Colloquium Mathematicae

We introduce and examine the notion of dense weak openness. In particular we show that multiplication in C(X) is densely weakly open whenever X is an interval in ℝ.

On Musielak-Orlicz spaces isometric to L2 or L∞.

Anna Kaminska (1997)

Collectanea Mathematica

It is proved that a Musielak-Orlicz space LΦ of real valued functions which is isometric to a Hilbert space coincides with L2 up to a weight, that is Φ(u,t) = c(t) u2. Moreover it is shown that any surjective isometry between LΦ and L∞ is a weighted composition operator and a criterion for LΦ to be isometric to L∞ is presented.

On non-primary Fréchet Schwartz spaces

J. Díaz (1997)

Studia Mathematica

Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions...

On nuclear maps between spaces of ultradiferentiables jets of Roumieu type.

Jean Schmets, Manuel Valdivia (2003)

RACSAM

Si K es un compacto no vacío en Rr, damos una condición suficiente para que la inyección canónica de ε{M},b(K) en ε{M},d(K) sea nuclear. Consideramos el caso mixto y obtenemos la existencia de un operador de extensión nuclear de ε{M1}(F)A en ε{M2}(Rr)D donde F es un subconjunto cerrado propio de Rr y A y D son discos de Banach adecuados. Finalmente aplicamos este último resultado al caso Borel, es decir cuando F = {0}.

Currently displaying 2061 – 2080 of 4027