On Optimum Regularity of Navier-Stokes Solutions at Time t = 0.
In this paper there is proved that every Musielak-Orlicz space is reflexive iff it is -convex. This is an essential extension of the results given by Ye Yining, He Miaohong and Ryszard Płuciennik [16].
Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where is the gradient of order , is the Hardy-Littlewood maximal operator, and is the Riesz potential of order , are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space is described.
Let K be a compact set in ℂ, f a function analytic in ℂ̅∖K vanishing at ∞. Let be its Taylor expansion at ∞, and the sequence of Hankel determinants. The classical Pólya inequality says that , where d(K) is the transfinite diameter of K. Goluzin has shown that for some class of compacta this inequality is sharp. We provide here a sharpness result for the multivariate analog of Pólya’s inequality, considered by the second author in Math. USSR Sbornik 25 (1975), 350-364.
We investigate isomorphic embeddings T: C(K) → C(L) between Banach spaces of continuous functions. We show that if such an embedding T is a positive operator then K is the image of L under an upper semicontinuous set-function having finite values. Moreover we show that K has a π-base of sets whose closures are continuous images of compact subspaces of L. Our results imply in particular that if C(K) can be positively embedded into C(L) then some topological properties of L, such as countable...
The purpose of this paper is to study the Sarason’s problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols and , we establish a necessary and sufficient condition for the boundedness of some Toeplitz products subjected to certain restriction on and . We also characterize this property in terms of the Berezin transform.
It is proved that the Köthe-Bochner function space E(X) has property β if and only if X is uniformly convex and E has property β. In particular, property β does not lift from X to E(X) in contrast to the case of Köthe-Bochner sequence spaces.
We study property (β) in Köthe-Bochner sequence spaces E(X), where E is any Köthe sequence space and X is an arbitrary Banach space. The question of whether or not this geometric property lifts from X and E to E(X) is examined. We prove that if dim X = ∞, then E(X) has property (β) if and only if X has property (β) and E is orthogonally uniformly convex. It is also showed that if dim X < ∞, then E(X) has property (β) if and only if E has property (β). Our results essentially extend and improve...
In 1997 Pták defined generalized Hankel operators as follows: Given two contractions and , an operator is said to be a generalized Hankel operator if and satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of and . This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat...