On sequential properties of Banach spaces, spaces of measures and densities
We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of . We attempt to carry out a construction of a Banach space of the form which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized...