Previous Page 15

Displaying 281 – 298 of 298

Showing per page

Trudinger–Moser inequality on the whole plane with the exact growth condition

Slim Ibrahim, Nader Masmoudi, Kenji Nakanishi (2015)

Journal of the European Mathematical Society

Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to L . It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modied versions are available. We prove a precised version of the latter, giving necessary and sufficient conditions for the boundedness, as well as for the compactness, in terms of the growth and decay of the nonlinear function....

Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura (2021)

Czechoslovak Mathematical Journal

Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

Two complete and minimal systems associated with the zeros of the Riemann zeta function

Jean-François Burnol (2004)

Journal de Théorie des Nombres de Bordeaux

We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We...

Two problems of Calderón-Zygmund theory on product-spaces

Jean-Lin Journé (1988)

Annales de l'institut Fourier

R. Fefferman has shown that, on a product-space with two factors, an operator T bounded on L 2 maps L into BMO of the product if the mean oscillation on a rectangle R of the image of a bounded function supported out of a multiple R’ of R, is dominated by C | R | s | R | - s , for some s > 0 . We show that this result does not extend in general to the case where E has three or more factors but remains true in this case if in addition T is a convolution operator, provided s > s 0 ( E ) . We also show that the Calderon-Coifman bicommutators,...

Two weight norm inequality for the fractional maximal operator and the fractional integral operator.

Yves Rakotondratsimba (1998)

Publicacions Matemàtiques

New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s < n, [resp. 0 < s < n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 < p < ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.

Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators

Bruno Franchi, Cristian E. Gutiérrez, Richard L. Wheeden (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we prove a two-weight Sobolev-Poincaré inequality for the function spaces associated with a Grushin type operator. Conditions on the weights are formulated in terms of a strong A weight with respect to the metric associated with the operator. Roughly speaking, the strong A condition provides relationships between line and solid integrals of the weight. Then, this result is applied in order to prove Harnack's inequality for positive weak solutions of some degenerate elliptic equations....

Two-weight weak type maximal inequalities in Orlicz classes

Luboš Pick (1991)

Studia Mathematica

Necessary and sufficient conditions are shown in order that the inequalities of the form ϱ ( M μ f > λ ) Φ ( λ ) C ʃ X Ψ ( C | f ( x ) | ) σ ( x ) d μ , or ϱ ( M μ f > λ ) C ʃ X Φ ( C λ - 1 | f ( x ) | ) σ ( x ) d μ hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, M μ is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.

Two-weighted criteria for integral transforms with multiple kernels

Vakhtang Kokilashvili, Alexander Meskhi (2006)

Banach Center Publications

Necessary and sufficient conditions governing two-weight L p norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.

Currently displaying 281 – 298 of 298

Previous Page 15