Displaying 21 – 40 of 122

Showing per page

Perturbations of isometries between Banach spaces

Rafał Górak (2011)

Studia Mathematica

We prove a very general theorem concerning the estimation of the expression ||T((a+b)/2) - (Ta+Tb)/2|| for different kinds of maps T satisfying some general perturbed isometry condition. It can be seen as a quantitative generalization of the classical Mazur-Ulam theorem. The estimates improve the existing ones for bi-Lipschitz maps. As a consequence we also obtain a very simple proof of the result of Gevirtz which answers the Hyers-Ulam problem and we prove a non-linear generalization of the Banach-Stone...

Perturbations of isometries between C(K)-spaces

Yves Dutrieux, Nigel J. Kalton (2005)

Studia Mathematica

We study the Gromov-Hausdorff and Kadets distances between C(K)-spaces and their quotients. We prove that if the Gromov-Hausdorff distance between C(K) and C(L) is less than 1/16 then K and L are homeomorphic. If the Kadets distance is less than one, and K and L are metrizable, then C(K) and C(L) are linearly isomorphic. For K and L countable, if C(L) has a subquotient which is close enough to C(K) in the Gromov-Hausdorff sense then K is homeomorphic to a clopen subset of L.

Plurisubharmonic martingales and barriers in complex quasi-Banach spaces

Nassif Ghoussoub, Bernard Maurey (1989)

Annales de l'institut Fourier

We describe the geometrical structure on a complex quasi-Banach space X that is necessay and sufficient for the existence of boundary limits for bounded, X -valued analytic functions on the open unit disc of the complex plane. It is shown that in such spaces, closed bounded subsets have many plurisubharmonic barriers and that bounded upper semi-continuous functions on these sets have arbitrarily small plurisubharmonic perturbations that attain their maximum. This yields a certain representation of...

Poincaré inequalities and Sobolev spaces.

Paul MacManus (2002)

Publicacions Matemàtiques

Our understanding of the interplay between Poincaré inequalities, Sobolev inequalities and the geometry of the underlying space has changed considerably in recent years. These changes have simultaneously provided new insights into the classical theory and allowed much of that theory to be extended to a wide variety of different settings. This paper reviews some of these new results and techniques and concludes with an example on the preservation of Sobolev spaces by the maximal function.[Proceedings...

Poincaré inequality and Hajłasz-Sobolev spaces on nested fractals

Katarzyna Pietruska-Pałuba, Andrzej Stós (2013)

Studia Mathematica

Given a nondegenerate harmonic structure, we prove a Poincaré-type inequality for functions in the domain of the Dirichlet form on nested fractals. We then study the Hajłasz-Sobolev spaces on nested fractals. In particular, we describe how the "weak"-type gradient on nested fractals relates to the upper gradient defined in the context of general metric spaces.

Points fixes et théorèmes ergodiques dans les espaces L¹(E)

Mourad Besbes (1992)

Studia Mathematica

We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.

Pointwise convergence fails to be strict

Ján Borsík, Roman Frič (1998)

Czechoslovak Mathematical Journal

It is known that the ring B ( ) of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring C ( ) of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of C ( ) . In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of C ( ) which differs from B ( ) .

Currently displaying 21 – 40 of 122