Displaying 501 – 520 of 4028

Showing per page

Biseparating maps on generalized Lipschitz spaces

Denny H. Leung (2010)

Studia Mathematica

Let X, Y be complete metric spaces and E, F be Banach spaces. A bijective linear operator from a space of E-valued functions on X to a space of F-valued functions on Y is said to be biseparating if f and g are disjoint if and only if Tf and Tg are disjoint. We introduce the class of generalized Lipschitz spaces, which includes as special cases the classes of Lipschitz, little Lipschitz and uniformly continuous functions. Linear biseparating maps between generalized Lipschitz spaces are characterized...

Bloch type spaces on the unit ball of a Hilbert space

Zhenghua Xu (2019)

Czechoslovak Mathematical Journal

We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.

BMO and Lipschitz approximation by solutions of elliptic equations

Joan Mateu, Yuri Netrusov, Joan Orobitg, Joan Verdera (1996)

Annales de l'institut Fourier

We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak * spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.

BMO-scale of distribution on n

René Erlín Castillo, Julio C. Ramos Fernández (2008)

Czechoslovak Mathematical Journal

Let S ' be the class of tempered distributions. For f S ' we denote by J - α f the Bessel potential of f of order α . We prove that if J - α f B M O , then for any λ ( 0 , 1 ) , J - α ( f ) λ B M O , where ( f ) λ = λ - n f ( φ ( λ - 1 · ) ) , φ S . Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order α > 0 belongs to the V M O space.

Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in ℂⁿ

Marco M. Peloso, Hercule Valencourt (2010)

Colloquium Mathematicae

We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces p , k ( ) , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.

Currently displaying 501 – 520 of 4028