Displaying 941 – 960 of 4028

Showing per page

El espacio L1(μ, E).

Alfonsa García López (1987)

Revista de la Real Academia de Ciencias Exactas Físicas y Naturales

Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis

Maria Alessandra Ragusa (1999)

Commentationes Mathematicae Universitatis Carolinae

In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class H 0 1 , p ( Ω ) for all 1 < p < and, as a consequence, the Hölder regularity of the solution u . is an elliptic second order operator with discontinuous coefficients ( V M O ) and the lower order terms belong to suitable Lebesgue spaces.

Elliptic problems in generalized Orlicz-Musielak spaces

Piotr Gwiazda, Piotr Minakowski, Aneta Wróblewska-Kamińska (2012)

Open Mathematics

We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.

Elliptic Systems of Pseudodifferential Equations in the Refined Scale on a Closed Manifold

Vladimir A. Mikhailets, Aleksandr A. Murach (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We study a system of pseudodifferential equations which is elliptic in the Petrovskii sense on a closed smooth manifold. We prove that the operator generated by the system is a Fredholm operator in a refined two-sided scale of Hilbert function spaces. Elements of this scale are special isotropic spaces of Hörmander-Volevich-Paneah.

Embedding c 0 in bvca ( Σ , X )

Juan Carlos Ferrando, L. M. Sánchez Ruiz (2007)

Czechoslovak Mathematical Journal

If ( Ω , Σ ) is a measurable space and X a Banach space, we provide sufficient conditions on Σ and X in order to guarantee that b v c a ( Σ , X ) , the Banach space of all X -valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of c 0 if and only if X does.

Embedding theorems for anisotropic Lipschitz spaces

F. J. Pérez (2005)

Studia Mathematica

Anisotropic Lipschitz spaces are considered. For these spaces we obtain sharp embeddings in Besov and Lorentz spaces. The methods used are based on estimates of iterative rearrangements. We find a unified approach that arises from the estimation of functions defined as minimum of a given system of functions. The case of L¹-norm is also covered.

Currently displaying 941 – 960 of 4028