Displaying 1241 – 1260 of 4027

Showing per page

Functions with prescribed singularities

Giovanni Alberti, S. Baldo, G. Orlandi (2003)

Journal of the European Mathematical Society

The distributional k -dimensional Jacobian of a map u in the Sobolev space W 1 , k 1 which takes values in the sphere S k 1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in S k 1 . In case M is polyhedral, the map we construct...

Funzioni B V e tracce

G. Anzellotti, M. Giaquinta (1978)

Rendiconti del Seminario Matematico della Università di Padova

Further characterizations of Sobolev spaces

Hoai-Minh Nguyen (2008)

Journal of the European Mathematical Society

Let ( F n ) n be a sequence of non-decreasing functions from [ 0 , + ) into [ 0 , + ) . Under some suitable hypotheses of ( F n ) n , we will prove that if g L p ( N ) , 1 < p < + , satisfies lim inf n N N F n ( | g ( x ) - g ( y ) | ) / | x - y | N + p d x d y < + , then g W 1 , p ( N ) and moreover lim n N N F n ( | g ( x ) - g ( y ) | ) / | x - y | N + p d x d y = K N , p N | g ( x ) | p d x , where K N , p is a positive constant depending only on N and p . This extends some results in J. Bourgain and H-M. Nguyen [A new characterization of Sobolev spaces, C. R. Acad Sci. Paris, Ser. I 343 (2006) 75-80] and H-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720]. We also present some partial results...

Further properties of Stepanov--Orlicz almost periodic functions

Yousra Djabri, Fazia Bedouhene, Fatiha Boulahia (2020)

Commentationes Mathematicae Universitatis Carolinae

We revisit the concept of Stepanov--Orlicz almost periodic functions introduced by Hillmann in terms of Bochner transform. Some structural properties of these functions are investigated. A particular attention is paid to the Nemytskii operator between spaces of Stepanov--Orlicz almost periodic functions. Finally, we establish an existence and uniqueness result of Bohr almost periodic mild solution to a class of semilinear evolution equations with Stepanov--Orlicz almost periodic forcing term.

Gagliardo-Nirenberg inequalities in logarithmic spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2006)

Colloquium Mathematicae

We obtain interpolation inequalities for derivatives: M q , α ( | f ( x ) | ) d x C [ M p , β ( Φ ( x , | f | , | ( 2 ) f | ) ) d x + M r , γ ( Φ ( x , | f | , | ( 2 ) f | ) ) d x ] , and their counterparts expressed in Orlicz norms: ||∇f||²(q,α) ≤ C||Φ₁(x,|f|,|∇(2)f|)||(p,β) ||Φ₂(x,|f|,|∇(2)f|)||(r,γ) , where | | · | | ( s , κ ) is the Orlicz norm relative to the function M s , κ ( t ) = t s ( l n ( 2 + t ) ) κ . The parameters p,q,r,α,β,γ and the Carathéodory functions Φ₁,Φ₂ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo-Nirenberg inequalities follow as a special case. Gagliardo-Nirenberg inequalities in logarithmic spaces with higher...

Gagliardo-Nirenberg inequalities in weighted Orlicz spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2006)

Studia Mathematica

We derive inequalities of Gagliardo-Nirenberg type in weighted Orlicz spaces on ℝⁿ, for maximal functions of derivatives and for the derivatives themselves. This is done by an application of pointwise interpolation inequalities obtained previously by the first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.

Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals

Bruno Franchi, Francesco Serra Cassano (1996)

Studia Mathematica

We prove a higher integrability result - similar to Gehring's lemma - for the metric space associated with a family of Lipschitz continuous vector fields by means of sub-unit curves. Applications are given to show the higher integrability of the gradient of minimizers of some noncoercive variational functionals.

General Franklin systems as bases in H¹[0,1]

Gegham G. Gevorkyan, Anna Kamont (2005)

Studia Mathematica

By a general Franklin system corresponding to a dense sequence of knots 𝓣 = (tₙ, n ≥ 0) in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots 𝓣, that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is a characterization of sequences 𝓣 for which the corresponding general Franklin system is a basis or an unconditional basis in H¹[0,1].

General Haar systems and greedy approximation

Anna Kamont (2001)

Studia Mathematica

We show that each general Haar system is permutatively equivalent in L p ( [ 0 , 1 ] ) , 1 < p < ∞, to a subsequence of the classical (i.e. dyadic) Haar system. As a consequence, each general Haar system is a greedy basis in L p ( [ 0 , 1 ] ) , 1 < p < ∞. In addition, we give an example of a general Haar system whose tensor products are greedy bases in each L p ( [ 0 , 1 ] d ) , 1 < p < ∞, d ∈ ℕ. This is in contrast to [11], where it has been shown that the tensor products of the dyadic Haar system are not greedy bases in L p ( [ 0 , 1 ] d ) for 1...

Generalised functions of bounded deformation

Gianni Dal Maso (2013)

Journal of the European Mathematical Society

We introduce the space G B D of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for G B D , which leads to a compactness result for the space G S B D of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational...

Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II

Dariusz Cichoń (2002)

Studia Mathematica

The Newman-Shapiro Isometry Theorem is proved in the case of Segal-Bargmann spaces of entire vector-valued functions (i.e. summable with respect to the Gaussian measure on ℂⁿ). The theorem is applied to find the adjoint of an unbounded Toeplitz operator T φ with φ being an operator-valued exponential polynomial.

Currently displaying 1241 – 1260 of 4027