On functions of integrable mean oscillation.
Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying .
We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
Using the Il'in integral representation of functions, imbedding theorems for weighted anisotropic Sobolev spaces in 𝔼ⁿ are proved. By the weight we assume a power function of the distance from an (n-2)-dimensional subspace passing through the domain considered.