Retractions and Open Mappings between Convex Sets.
In connection with the classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes . We prove that when ϕ is and has lower index greater than one, the class coincides with some reverse-Hölder class . For more general ϕ we still get although the intersection of all these gives a proper subset of .
The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent. We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem
We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an -function whose index function is monotonous, the exact value of the Orlicz sequence space with Luxemburg norm is or . The Riesz angles of Orlicz space with Orlicz norm has the estimation .
We show that the boundedness, p > 2, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.
Our aim is to give Sobolev-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces as an extension of T. Ohno, T. Shimomura (2022). Our results are new even for the doubling metric measure spaces.
The main aim of this short paper is to study Riesz potentials on one-mode interacting Fock spaces equipped with deformed annihilation, creation, and neutral operators with constants and , as in equations (1.4)-(1.6). First, to emphasize the importance of these constants, we summarize our previous results on the Hilbert space of analytic L² functions with respect to a probability measure on ℂ. Then we consider the Riesz kernels of order 2α, , on ℂ if , which can be derived from the Bessel...
Let H be a closed subgroup of the group of rotation of Rn. The subspaces of distributions of Besov-Lizorkin-Triebel type invariant with respect to natural action of H are investigated. We give sufficient and necessary conditions for the compactness of the Sobolev-type embeddings. It is also proved that H-invariance of function implies its decay properties at infinity as well as the better local smoothness. This extends the classical Strauss lemma. The main tool in our investigations is an adapted...
In this paper, the criteria of strong roughness, roughness and pointwise roughness of Orlicz norm and Luxemburg norm on Musielak-Orlicz function spaces are obtained.
We present necessary and sufficient conditions for a rearrangement invariant function space to have a complete orthonormal uniformly bounded RUC system.