Displaying 101 – 120 of 139

Showing per page

Representation of multilinear operators on C(K, X) spaces.

Ignacio Villanueva (2002)

RACSAM

We present a Riesz type representation theorem for multilinear operators defined on the product of C(K,X) spaces with values in a Banach space. In order to do this we make a brief exposition of the theory of operator valued polymeasures.

Representations of the spaces C ( N ) H k , p ( N )

A. Albanese, V. Moscatelli (2000)

Studia Mathematica

We give a representation of the spaces C ( N ) H k , p ( N ) as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that C ( N ) H k , 2 ( N ) is isomorphic to the sequence space s l 2 ( l 2 ) , thereby showing that the isomorphy class does not depend on the dimension N if p=2.

Reproducing kernels and Riccati equations

Harry Dym (2001)

International Journal of Applied Mathematics and Computer Science

The purpose of this paper is to exhibit a connection between the Hermitian solutions of matrix Riccati equations and a class of finite dimensional reproducing kernel Krein spaces. This connection is then exploited to obtain minimal factorizations of rational matrix valued functions that are J-unitary on the imaginary axis in a natural way.

Resistance Conditions and Applications

Juha Kinnunen, Pilar Silvestre (2013)

Analysis and Geometry in Metric Spaces

This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality...

Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable

André Unterberger (1971)

Annales de l'institut Fourier

L’objet de cet article est de prouver des théorèmes du genre suivant : “Soient P un opérateur différentiel sur R n , ρ une fonction C à valeurs réelles, k un nombre réel et u une distribution à support compact : alors, si P u H ρ , u H ρ + k ” ; l’espace H ρ est ici l’espace de Sobolev “d’ordre variable” associé à ρ  ; bien entendu, il faut des hypothèses sur P , ρ et k . Les cas traités sont :1) certains opérateurs à coefficients variables déjà considérés dans le chapitre VIII du livre de L. Hörmander ;2) tous les opérateurs...

Currently displaying 101 – 120 of 139