On a class of operators on Orlicz spaces
Let and , where a(s) is a positive continuous function such that and b(s) is quasi-increasing and . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants and such that for all ; (jj) there exist positive constants and such that for all .
A definition of seminorm in the Sobolev space Ws,p (Γ) on a smooth compact manifold Gamma without boundary, using a localization procedure without partition of unity.
A modification of the Nikolskij extension theorem for functions from Sobolev spaces is presented. This modification requires the boundary to be only Lipschitz continuous for an arbitrary ; however, it is restricted to the case of two-dimensional bounded domains.
The Hardy inequality with holds for if is an open set with a sufficiently smooth boundary and if . P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for .
We prove an approximation theorem in generalized Sobolev spaces with variable exponent and we give an application of this approximation result to a necessary condition in the calculus of variations.
In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of , Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that is isomorphic to some ring of continuous functions if and only if is functionally countable. For a strongly zero-dimensional space , this is equivalent to say that is functionally countable. Hence for every -space it is equivalent to pseudo--compactness.
Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and , then , where C is a constant independent of f and g.
Valov proved a general version of Arvanitakis's simultaneous selection theorem which is a common generalization of both Michael's selection theorem and Dugundji's extension theorem. We show that Valov's theorem can be extended by applying an argument by means of Pettis integrals due to Repovš, Semenov and Shchepin.