Displaying 201 – 220 of 279

Showing per page

Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable

André Unterberger (1971)

Annales de l'institut Fourier

L’objet de cet article est de prouver des théorèmes du genre suivant : “Soient P un opérateur différentiel sur R n , ρ une fonction C à valeurs réelles, k un nombre réel et u une distribution à support compact : alors, si P u H ρ , u H ρ + k ” ; l’espace H ρ est ici l’espace de Sobolev “d’ordre variable” associé à ρ  ; bien entendu, il faut des hypothèses sur P , ρ et k . Les cas traités sont :1) certains opérateurs à coefficients variables déjà considérés dans le chapitre VIII du livre de L. Hörmander ;2) tous les opérateurs...

S'-convolvability with the Poisson kernel in the Euclidean case and the product domain case

Josefina Alvarez, Martha Guzmán-Partida, Urszula Skórnik (2003)

Studia Mathematica

We obtain real-variable and complex-variable formulas for the integral of an integrable distribution in the n-dimensional case. These formulas involve specific versions of the Cauchy kernel and the Poisson kernel, namely, the Euclidean version and the product domain version. We interpret the real-variable formulas as integrals of S’-convolutions. We characterize those tempered distribution that are S’-convolvable with the Poisson kernel in the Euclidean case and the product domain case. As an application...

Some remarks on convolution equations

C. A. Berenstein, M. A. Dostal (1973)

Annales de l'institut Fourier

Using a description of the topology of the spaces E ' ( Ω ) ( Ω open convex subset of R n ) via the Fourier transform, namely their analytically uniform structures, we arrive at a formula describing the convex hull of the singular support of a distribution T , T E ' . We give applications to a class of distributions T satisfying cv. sing. supp. S * T = cv. sing. supp. S + cv. sing. supp. T for all S E ' .

Spaces of sequences, sampling theorem, and functions of exponential type

Rodolfo Torres (1991)

Studia Mathematica

We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.

Currently displaying 201 – 220 of 279