The Kontorovich-Lebedev Transformation of Distributions.
Ram S. Pathak, Jagdish N. Pandey (1979)
Mathematische Zeitschrift
Erwin Brüning (1981)
Annales de l'I.H.P. Physique théorique
De Grande-De Kimpe, N., Khrennikov, A.Yu. (1996)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Manuel Valdivia (1977)
Annales de l'institut Fourier
Certain classes of locally convex space having non complete separated quotients are studied and consequently results about -completeness are obtained. In particular the space of L. Schwartz is not -complete where denotes a non-empty open set of the euclidean space .
M. Valdivia (1974)
Mathematische Annalen
Swartz, Charles (1970)
Portugaliae mathematica
Kučera, Jan (1985)
International Journal of Mathematics and Mathematical Sciences
Tiwari, U.N., Pandey, J.N. (1979)
International Journal of Mathematics and Mathematical Sciences
Carmichael, D. Richard (1977)
Portugaliae mathematica
Taras Banakh (2000)
Studia Mathematica
We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: , , , , or , where and . In particular, the Schwartz space D’ of distributions is homeomorphic to . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either...
Burgin, M.S. (2005)
Discrete Dynamics in Nature and Society
Iban Harlouchet (2004)
Publicacions Matemàtiques
Charles W. Swartz (1975)
Czechoslovak Mathematical Journal
David L. Johnson (1980)
Mathematische Annalen
Y.-S. Han (1994)
Studia Mathematica
In [HS] the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type were introduced. In this paper, the Triebel-Lizorkin spaces on spaces of homogeneous type are generalized to the case where , and a new atomic decomposition for these spaces is obtained. As a consequence, we give the Littlewood-Paley characterization of Hardy spaces on spaces of homogeneous type which were introduced by the maximal function characterization in [MS2].
Manfred Kremer (1976)
Mathematische Annalen
Manfred Kremer (1976)
Mathematische Annalen
C. Fernández, A. Galbis, M.C. Gómez-Collado (2003)
RACSAM
We study the representation of distributions (and ultradistributions of Beurling type) of Lp-growth, 1 ≤ p ≤ ∞, on RNas boundary values of holomorphic functions on (C R)N.
Giuliano Bratti (1971)
Rendiconti del Seminario Matematico della Università di Padova
Pablo Galindo (1983)
Collectanea Mathematica