The Kontorovich-Lebedev Transformation of Distributions.
Certain classes of locally convex space having non complete separated quotients are studied and consequently results about -completeness are obtained. In particular the space of L. Schwartz is not -complete where denotes a non-empty open set of the euclidean space .
We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: , , , , or , where and . In particular, the Schwartz space D’ of distributions is homeomorphic to . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either...
In [HS] the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type were introduced. In this paper, the Triebel-Lizorkin spaces on spaces of homogeneous type are generalized to the case where , and a new atomic decomposition for these spaces is obtained. As a consequence, we give the Littlewood-Paley characterization of Hardy spaces on spaces of homogeneous type which were introduced by the maximal function characterization in [MS2].
We study the representation of distributions (and ultradistributions of Beurling type) of Lp-growth, 1 ≤ p ≤ ∞, on RNas boundary values of holomorphic functions on (C R)N.