Sur des propriétés d'approximation des espaces de distributions, II.
Soient (resp. ) l’anneau des germes de fonctions de Nash (resp. l’anneau des germes de fonctions ) à l’origine de : (resp. ) le module sur des germes de fonctions de Bernstein (resp. le module sur des germes de distributions de Bernstein) à l’origine de . Les deux résultats principaux de l’article sont les suivants : est un module injectif sur et est un module plat sur .
We review recent developments in the theory of inductive limits and use them to give a new and rather easy proof for Hörmander?s characterization of surjective convolution operators on spaces of Schwartz distributions.
Let denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For with one can define the convolution operator , . We give a characterization of the surjectivity of for quasianalytic classes , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform of μ.
We show that if Ω is an open subset of ℝ², then the surjectivity of a partial differential operator P(D) on the space of ultradistributions of Beurling type is equivalent to the surjectivity of P(D) on .
Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.