Displaying 81 – 100 of 279

Showing per page

Extension and lacunas of solutions of linear partial differential equations

Uwe Franken, Reinhold Meise (1996)

Annales de l'institut Fourier

Let K Q be compact, convex sets in n with K and let P ( D ) be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of P ( D ) in the space ( K ) of all C -functions on K extends to a zero solution in ( Q ) resp. in ( n ) . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of P in n and in terms of fundamental solutions for P ( D ) with lacunas.

Extension maps in ultradifferentiable and ultraholomorphic function spaces

Jean Schmets, Manuel Valdivia (2000)

Studia Mathematica

The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for C -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.

Extensions de jets dans des intersections de classes non quasi-analytiques

P. Beaugendre (2001)

Annales Polonici Mathematici

In [3], J. Chaumat and A.-M. Chollet prove, among other things, a Whitney extension theorem, for jets on a compact subset E of ℝⁿ, in the case of intersections of non-quasi-analytic classes with moderate growth and a Łojasiewicz theorem in the regular situation. These intersections are included in the intersection of Gevrey classes. Here we prove an extension theorem in the case of more general intersections such that every C -Whitney jet belongs to one of them. We also prove a linear extension theorem...

Currently displaying 81 – 100 of 279