On regular temperature distribution
In this paper we show that if is a convolution operator in , and , then the zeros of the Fourier transform of are of bounded order. Then we discuss relations between the topologies of the space of convolution operators on . Finally, we give sufficient conditions for convergence in the space of convolution operators in and in its dual.
A corona type theorem is given for the ring D'A(Rd) of periodic distributions in Rd in terms of the sequence of Fourier coefficients of these distributions,which have at most polynomial growth. It is also shown that the Bass stable rank and the topological stable rank of D'A(Rd) are both equal to 1.
We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.
Let denote the non-quasianalytic class of Beurling type on an open set Ω in . For the surjectivity of the convolution operator is characterized by various conditions, e.g. in terms of a convexity property of the pair and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator between ultradistributions of Roumieu type whenever . These...
We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region and .