Division Problem and Partial Differential Equations with Constant Coefficients in Colombeau's Space of New Generalized Functions.
Asymptotic expansions at the origin with respect to the radial variable are established for solutions to equations with smooth 2-dimensional singular Fuchsian type operators.
In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.
On connaît le lien intime qui existe entre les équations fonctionnelles des fonctions et les formules sommatoires dont le prototype est donné par celle de Poisson. Ce lien fait intervenir la transformation intégrale de Fourier et ses généralisations. Ici, nous réexaminons la signification harmonique (ainsi qu’hilbertienne et distributionnelle) des équations fonctionnelles ayant la forme la plus simple, à savoir, celle s’appliquant pour la fonction dzêta de Riemann et les séries de Dirichlet...
The two diffeomorphism invariant algebras introduced in Grosser M., Farkas E., Kunziger M., Steinbauer R., On the foundations of nonlinear generalized functions I, II, Mem. Amer. Math. Soc. 153 (2001), no. 729, 93 pp., are identical.
We consider an ordinary or stochastic nonlinear equation with generalized coefficients as an equation in differentials in the algebra of new generalized functions in the sense of [8]. Consequently, the solution of such an equation is a new generalized function. We formulate conditions under which the solution of a given equation in the algebra of new generalized functions is associated with an ordinary function or process. Moreover the class of all possible associated functions and processes is...