Loading [MathJax]/extensions/MathZoom.js
The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
Let be a complex manifold, a generic submanifold of , the real underlying manifold to . Let be an open subset of with analytic, a complexification of . We first recall the notion of -tuboid of and of and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for to the extendability of functions on to -tuboids of . Next, if has complex dimension 2, we give results on extension...
It is proved that any Banach valued distribution on a bounded set can be extended to all of if and only if it is a derivative of a uniformly continuous function. A similar result is given for distributions on an unbounded set. An example shows that this does not extend to Frechet valued distributions. This relies on the fact that a Banach valued distribution is locally a derivative of a uniformly continuous function. For sake of completeness, a global representation of a Banach valued distribution...
In [3], J. Chaumat and A.-M. Chollet prove, among other things, a Whitney extension theorem, for jets on a compact subset E of ℝⁿ, in the case of intersections of non-quasi-analytic classes with moderate growth and a Łojasiewicz theorem in the regular situation. These intersections are included in the intersection of Gevrey classes. Here we prove an extension theorem in the case of more general intersections such that every -Whitney jet belongs to one of them. We also prove a linear extension theorem...
Currently displaying 21 –
29 of
29