On multipliers of temperate distributions
From the fact that the unique solution of a homogeneous linear algebraic system is the trivial one we can obtain the existence of a solution of the nonhomogeneous system. Coefficients of the systems considered are elements of the Colombeau algebra of generalized real numbers. It is worth mentioning that the algebra is not a field.
In this paper we show that if is a convolution operator in , and , then the zeros of the Fourier transform of are of bounded order. Then we discuss relations between the topologies of the space of convolution operators on . Finally, we give sufficient conditions for convergence in the space of convolution operators in and in its dual.
A corona type theorem is given for the ring D'A(Rd) of periodic distributions in Rd in terms of the sequence of Fourier coefficients of these distributions,which have at most polynomial growth. It is also shown that the Bass stable rank and the topological stable rank of D'A(Rd) are both equal to 1.