On the -compatibility of supports of distributions of -type.
We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces and for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.
A uni-nullnorm is a special case of 2-uninorms obtained by letting a uninorm and a nullnorm share the same underlying t-conorm. This paper is mainly devoted to solving the distributivity equation between uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms and some binary operators, such as, continuous t-norms, continuous t-conorms, uninorms, and nullnorms. The new results differ from the previous ones about the distributivity in the class of 2-uninorms, which have not yet...
We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.
In this paper we solve the functional equationH [tau(F,G), chi (F,G)] = H (F,G)where the unknowns tau and chi are two semigroups on a space of distribution functions, and H is a given pointwise binary operation on this space satisfying some regularity conditions.
The incomplete Gamma function and its associated functions and are defined as locally summable functions on the real line and some convolutions and neutrix convolutions of these functions and the functions and are then found.
Mathematics Subject Classification: 44A05, 46F12, 28A78We prove that Dirac’s (symmetrical) delta function and the Hausdorff dimension function build up a pair of reciprocal functions. Our reasoning is based on the theorem by Mellin. Applications of the reciprocity relation demonstrate the merit of this approach.