A sequential theory of some semigroups in special spaces of generalized functions
We show that Boehmians defined over open sets of ℝⁿ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.
In this paper we use a duality method to introduce a new space of generalized distributions. This method is exactly the same introduced by Schwartz for the distribution theory. Our space of generalized distributions contains all the Schwartz distributions and all the multipole series of physicists and is, in a certain sense, the smallest space containing all these series.
Automorphic distributions are distributions on , invariant under the linear action of the group . Combs are characterized by the additional requirement of being measures supported in : their decomposition into homogeneous components involves the family , of Eisenstein distributions, and the coefficients of the decomposition are given as Dirichlet series . Functional equations of the usual (Hecke) kind relative to turn out to be equivalent to the invariance of the comb under some modification...
The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'
The well-known general Tauberian theorem of N. Wiener is formulated and proved for distributions in the place of functions and its Ganelius' formulation is corrected. Some changes of assumptions of this theorem are discussed, too.