Displaying 141 – 160 of 926

Showing per page

Characterization of surjective convolution operators on Sato's hyperfunctions

Michael Langenbruch (2010)

Banach Center Publications

Let μ ( d ) ' be an analytic functional and let T μ be the corresponding convolution operator on Sato’s space ( d ) of hyperfunctions. We show that T μ is surjective iff T μ admits an elementary solution in ( d ) iff the Fourier transform μ̂ satisfies Kawai’s slowly decreasing condition (S). We also show that there are 0 μ ( d ) ' such that T μ is not surjective on ( d ) .

Characterization of surjective partial differential operators on spaces of real analytic functions

Michael Langenbruch (2004)

Studia Mathematica

Let A(Ω) denote the real analytic functions defined on an open set Ω ⊂ ℝⁿ. We show that a partial differential operator P(D) with constant coefficients is surjective on A(Ω) if and only if for any relatively compact open ω ⊂ Ω, P(D) admits (shifted) hyperfunction elementary solutions on Ω which are real analytic on ω (and if the equation P(D)f = g, g ∈ A(Ω), may be solved on ω). The latter condition is redundant if the elementary solutions are defined on conv(Ω). This extends and improves previous...

Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse

B. A. Taylor, R. Meise, Dietmar Vogt (1990)

Annales de l'institut Fourier

Solving a problem of L. Schwartz, those constant coefficient partial differential operators P ( D ) are characterized that admit a continuous linear right inverse on ( Ω ) or 𝒟 ' ( Ω ) , Ω an open set in R n . For bounded Ω with C 1 -boundary these properties are equivalent to P ( D ) being very hyperbolic. For Ω = R n they are equivalent to a Phragmen-Lindelöf condition holding on the zero variety of the polynomial P .

Currently displaying 141 – 160 of 926