Previous Page 7

Displaying 121 – 132 of 132

Showing per page

Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition

Francine Meylan (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let X be a complex Banach space. Recall that X admits afinite-dimensional Schauder decompositionif there exists a sequence { X n } n = 1 of finite-dimensional subspaces of X , such that every x X has a unique representation of the form x = n = 1 x n , with x n X n for every n . The finite-dimensional Schauder decomposition is said to beunconditionalif, for every x X , the series x = n = 1 x n , which represents x , converges unconditionally, that is, n = 1 x π ( n ) converges for every permutation π of the integers. For short, we say that X admits an unconditional F.D.D.We...

Approximation of holomorphic functions of infinitely many variables II

László Lempert (2000)

Annales de l'institut Fourier

Let X be a Banach space and B ( R ) X the ball of radius R centered at 0 . Can any holomorphic function on B ( R ) be approximated by entire functions, uniformly on smaller balls B ( r ) ? We answer this question in the affirmative for a large class of Banach spaces.

Approximation of holomorphic mappings on infinite dimensional spaces.

Erhan Çaliskan (2004)

Revista Matemática Complutense

In this article we examine necessary and sufficient conditions for the predual of the space of holomorphic mappings of bounded type, Gb(U), to have the approximation property and the compact approximation property and we consider when the predual of the space of holomorphic mappings, G(U), has the compact approximation property. We obtain also similar results for the preduals of spaces of m-homogeneous polynomials, Q(mE).

Approximation properties determined by operator ideals and approximability of homogeneous polynomials and holomorphic functions

Sonia Berrios, Geraldo Botelho (2012)

Studia Mathematica

Given an operator ideal ℐ, a Banach space E has the ℐ-approximation property if the identity operator on E can be uniformly approximated on compact subsets of E by operators belonging to ℐ. In this paper the ℐ-approximation property is studied in projective tensor products, spaces of linear functionals, spaces of linear operators/homogeneous polynomials, spaces of holomorphic functions and their preduals.

Around Widder’s characterization of the Laplace transform of an element of L ( + )

Jan Kisyński (2000)

Annales Polonici Mathematici

Let ϰ be a positive, continuous, submultiplicative function on + such that l i m t e - ω t t - α ϰ ( t ) = a for some ω ∈ ℝ, α ∈ + ¯ and a + . For every λ ∈ (ω,∞) let ϕ λ ( t ) = e - λ t for t + . Let L ϰ 1 ( + ) be the space of functions Lebesgue integrable on + with weight ϰ , and let E be a Banach space. Consider the map ϕ : ( ω , ) λ ϕ λ L ϰ 1 ( + ) . Theorem 5.1 of the present paper characterizes the range of the linear map T T ϕ defined on L ( L ϰ 1 ( + ) ; E ) , generalizing a result established by B. Hennig and F. Neubrander for ϰ ( t ) = e ω t . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...

Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains

Simeon Reich, David Shoikhet (1998)

Studia Mathematica

Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.

Currently displaying 121 – 132 of 132

Previous Page 7