An Operator Characterization of Vector Measures which Have Radon-Nikodym Derivatives.
Let be a Banach space with a countable unconditional basis (e.g., ), an open set and complex-valued holomorphic functions on , such that the Fréchet differentials are linearly independant over at each . We suppose that is a complete intersection and we consider a holomorphic Banach vector bundle . If (resp.) denote the ideal of germs of holomorphic functions on that vanish on (resp. the sheaf of germs of holomorphic sections of ), then the sheaf cohomology groups , vanish...
An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in -algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.
Soient , des espaces de Banach , des espaces d’Orlicz, on définit les applications sommantes de dans . On montre que de telles applications sont radonifiantes de dans .On donne une factorisation caractéristique des applications sommantes.
Soit un espace de Banach complexe, et notons la boule de rayon centrée en . On considère le problème d’approximation suivant: étant donnés , et une fonction holomorphe dans , existe-t-il toujours une fonction , holomorphe dans , telle que sur ? On démontre que c’est bien le cas si est l’espace des suites sommables.