Displaying 321 – 340 of 409

Showing per page

Some simple proofs in holomorphic spectral theory

Graham R. Allan (2007)

Banach Center Publications

This paper gives some very elementary proofs of results of Aupetit, Ransford and others on the variation of the spectral radius of a holomorphic family of elements in a Banach algebra. There is also some brief discussion of a notorious unsolved problem in automatic continuity theory.

Spectral characterizations of central elements in Banach algebras

Matej Brešar, Peter Šemrl (1996)

Studia Mathematica

Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).

Stable inverse-limit sequences, with application to Predict algebras

Graham Allan (1996)

Studia Mathematica

The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.

Strict topologies as topological algebras

Surjit Singh Khurana (2001)

Czechoslovak Mathematical Journal

Let X be a completely regular Hausdorff space, C b ( X ) the space of all scalar-valued bounded continuous functions on X with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally m -convex.

Currently displaying 321 – 340 of 409