A real variable characterization of
Let be a class of entire functions represented by Dirichlet series with complex frequencies for which is bounded. Then is proved to be a commutative Banach algebra with identity and it fails to become a division algebra. is also proved to be a total set. Conditions for the existence of inverse, topological zero divisor and continuous linear functional for any element belonging to have also been established.
Étant donnés un compact du plan complexe, et une mesure non nulle sur , on étudie , l’adhérence dans , pour la topologie , de l’algèbre des fractions rationnelles d’une variable complexe, à pôles hors de . Le résultat principal obtenu est qu’il existe un sous-ensemble de , éventuellement vide, mesurable pour la mesure de Lebesgue plane, et une mesure , éventuellement nulle, absolument continue par rapport à la mesure , tels que : soit isométriquement isomorphe à , où désigne la...
A systematic investigation of algebras of holomorphic functions endowed with the Hadamard product is given. For example we show that the set of all non-invertible elements is dense and that each multiplicative functional is continuous, answering some questions in the literature.
On étudie certaines algèbres de fonctions analytiques réelles définies sur un ouvert de . La propriété principale de ces algèbres est que tout semi-analytique de défini globalement à l’aide d’un nombre fini de fonctions de , admet un nombre fini de composantes connexes. En reprenant les idées de Khovanskii (lemme de Rolle généralisé), on démontre que ces algèbres restent topologiquement noethériennes quand on leur adjoint les solutions de certaines équations différentielles du ler ordre. Par...
We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.
Let f be a function in the Douglas algebra A and let I be a finitely generated ideal in A. We give an estimate for the distance from f to I that allows us to generalize a result obtained by Bourgain for to arbitrary Douglas algebras.