Ein Banach-Stone-Satz für adaptierte Vektorverbände und Algebren.
It is shown how to embed the polydisk algebras (finite and infinite ones) into the disk algebra A(𝔻̅). As a consequence, one obtains uniform closed subalgebras of A(𝔻̅) which have arbitrarily prescribed stable ranks.
We obtain that the power maps are equicontinuous at zero in any Baire locally convex algebra with a continuous product in which all entire functions operate; whence is m-convex in the commutative case. As a consequence, we get the same result of Mityagin, Rolewicz and Zelazko for commutative B0-algebras.
An error in the paper named in the title ibid., 42-4 (1992)875-889 is corrected.
Examples of non-finitely generated function algebras on planar sets with small maximal ideal spaces are given.
It is shown that for each nonzero point x in the open unit disc D, there is a measure whose support is exactly ∂D ∪ {x} and that is also a weak*-exposed point in the set of representing measures for the origin on the disc algebra. This yields a negative answer to a question raised by John Ryff.