Page 1 Next

Displaying 1 – 20 of 103

Showing per page

On a -Kasch spaces

Ali Akbar Estaji, Melvin Henriksen (2010)

Archivum Mathematicum

If X is a Tychonoff space, C ( X ) its ring of real-valued continuous functions. In this paper, we study non-essential ideals in C ( X ) . Let a be a infinite cardinal, then X is called a -Kasch (resp. a ¯ -Kasch) space if given any ideal (resp. z -ideal) I with gen ( I ) < a then I is a non-essential ideal. We show that X is an 0 -Kasch space if and only if X is an almost P -space and X is an 1 -Kasch space if and only if X is a pseudocompact and almost P -space. Let C F ( X ) denote the socle of C ( X ) . For a topological space X with only...

On certain products of Banach algebras with applications to harmonic analysis

Mehdi Sangani Monfared (2007)

Studia Mathematica

Given Banach algebras A and B with spectrum σ(B) ≠ ∅, and given θ ∈ σ(B), we define a product A × θ B , which is a strongly splitting Banach algebra extension of B by A. We obtain characterizations of bounded approximate identities, spectrum, topological center, minimal idempotents, and study the ideal structure of these products. By assuming B to be a Banach algebra in ₀(X) whose spectrum can be identified with X, we apply our results to harmonic analysis, and study the question of spectral synthesis,...

On dense ideals of C*-algebras and generalizations of the Gelfand-Naimark Theorem

Jorma Arhippainen, Jukka Kauppi (2013)

Studia Mathematica

We develop the theory of Segal algebras of commutative C*-algebras, with an emphasis on the functional representation. Our main results extend the Gelfand-Naimark Theorem. As an application, we describe faithful principal ideals of C*-algebras. A key ingredient in our approach is the use of Nachbin algebras to generalize the Gelfand representation theory.

Currently displaying 1 – 20 of 103

Page 1 Next