Über Algebren stetiger Operatorfunktionen
Soit une algèbre uniforme et soit un idéal fermé de tel que soit une algèbre isométriquement isomorphe à , il existe alors une sous-algèbre fermée telle que est isométriquement isomorphe à .
Es bien conocido que el conjunto M de los ideales maximales de un álgebra de Banach compleja X es un espacio compacto y Hausdorff para la topología de Gelfand, y que X es isométricamente isomorfa al álgebra C(M,C) de las funciones continuas sobre M si y sólo si X es una B*-álgebra, es decir un álgebra de Banach con involución verificando ||x*x|| = ||x||2 (Gelfand-Naimark). En el caso no-arquimediano, X admite tal representación si y sólo si el subespacio vectorial engendrado por {e ∈ X | e2 = e,...
Dati due elementi e in un'algebra uniforme , sia . Nella presente Nota si danno, fra l’altro, due nuove dimostrazioni elementari del fatto che la funzione è subarmonica su e che l’applicazione è analitica nel senso di Oka.
We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is bounded? Both questions are related to a “uniform spectral radius” of the algebra, , introduced by Björk. Question (i) has an affirmative answer if and only if , and this result is extended to more general nonlinear extremal problems...
We prove that every quotient algebra of a unital Banach function algebra A has a unique complete norm if A is a Ditkin algebra. The theorem applies, for example, to the algebra A (Γ) of Fourier transforms of the group algebra of a locally compact abelian group (with identity adjoined if Γ is not compact). In such algebras non-semisimple quotients arise from closed subsets E of Γ which are sets of non-synthesis. Examples are given to show that the condition of Ditkin cannot be relaxed. We construct...
A unital commutative Banach algebra is spectrally separable if for any two distinct non-zero multiplicative linear functionals φ and ψ on it there exist a and b in such that ab = 0 and φ(a)ψ(b) ≠ 0. Spectrally separable algebras are a special subclass of strongly harmonic algebras. We prove that a unital commutative Banach algebra is spectrally separable if there are enough elements in such that the corresponding multiplication operators on have the decomposition property (δ). On the other hand,...