Representations of modules over a *-algebra and related seminorms
Representations of a module over a *-algebra are considered and some related seminorms are constructed and studied, with the aim of finding bounded *-representations of .
Representations of a module over a *-algebra are considered and some related seminorms are constructed and studied, with the aim of finding bounded *-representations of .
We give a necessary and sufficient criterion for a normal CP-map on a von Neumann algebra to admit a restriction to a maximal commutative subalgebra. We apply this result to give a far reaching generalization of Rebolledo's sufficient criterion for the Lindblad generator of a Markov semigroup on ℬ(G).
We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math....
In this paper the tensor products of Hilbert modules over locally -algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert -modules are also valid in the context of Hilbert modules over locally -algebras.
We define spatial CPD-semigroups and construct their Powers sum. We construct the Powers sum for general spatial CP-semigroups. In both cases, we show that the product system of that Powers sum is the product of the spatial product systems of its factors. We show that on the domain of intersection, pointwise bounded CPD-semigroups on the one side and Schur CP-semigroups on the other, the constructions coincide. This summarizes all known results about Powers sums and generalizes them considerably....
Following Jansen and Waldmann, and Kajiwara and Watatani, we introduce notions of coactions of a finite-dimensional C*-Hopf algebra on a Hilbert C*-bimodule of finite type in the sense of Kajiwara and Watatani and define their crossed product. We investigate their basic properties and show that the strong Morita equivalence for coactions preserves the Rokhlin property for coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras.