Purely infinite -algebras arising from dynamical systems
Claire Anantharaman-Delaroche (1997)
Bulletin de la Société Mathématique de France
Marcelo Laca, Jack Spielberg (1996)
Journal für die reine und angewandte Mathematik
Haagerup, U., Thorbjørnsen, S. (1999)
Documenta Mathematica
Gerhard Janssen, Klaus Alvermann (1984)
Mathematische Zeitschrift
Stacey, P.J. (2006)
The New York Journal of Mathematics [electronic only]
M. Enomoto, M. Nagisa, Y. Watatani (1991)
Mathematica Scandinavica
Stefaan Vaes (2005/2006)
Séminaire Bourbaki
Using very original methods from operator algebras, Sorin Popa has shown that the orbit structure of the Bernoulli action of a property (T) group, completely remembers the group and the action. This information is even essentially contained in the crossed product von Neumann algebra. This is the first von Neumann strong rigidity theorem in the literature. The same methods allow Popa to obtain II factors with prescribed countable fundamental group.
S. Popa (1984)
Inventiones mathematicae
P. de de Harpe (1979)
Commentarii mathematici Helvetici
R. Longo (1984)
Inventiones mathematicae
Thierry Fack, Pierre de La Harpe (1980)
Annales de l'institut Fourier
Soit une algèbre de von Neumann finie. Nous montrons que l’espace des sommes finies de commutateurs de coïncide avec le noyau de la trace centrale. Si est un facteur, il en résulte par exemple que tout élément est une combinaison linéaire finie de projecteurs de dimension . Nous montrons aussi dans ce cas que le groupe dérivé de coïncide avec le noyau du déterminant de Fuglede-Kadison.
Rørdam, Mikael (1997)
Documenta Mathematica
Robert J. Archbold, Eberhard Kaniuth (2006)
Studia Mathematica
Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.
S. Doplicher, R. Longo (1984)
Inventiones mathematicae
Erik Christensen (1979)
Mathematische Annalen
Etienne Blanchard (1997)
Journal für die reine und angewandte Mathematik
Rakhimov, A.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Miguel Martín, Antonio M. Peralta (2001)
Studia Mathematica
Let A be a type II von Neumann algebra with predual A⁎. We prove that A⁎ does not have the alternative Dunford-Pettis property introduced by W. Freedman [7], i.e., there is a sequence (φₙ) converging weakly to φ in A⁎ with ||φₙ|| = ||φ|| = 1 for all n ∈ ℕ and a weakly null sequence (xₙ) in A such that φₙ(xₙ) ↛ 0. This answers a question posed in [7].
Allan M. Sinclair, Iain Raeburn (1989)
Mathematica Scandinavica
Klaus Alvermann (1987)
Mathematische Zeitschrift