Dimension groups for interval maps.
G. Elliott extended the classification theory of -algebras to certain real rank zero inductive limits of subhomogeneous -algebras with one dimensional spectrum. We show that this class of -algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the -group. Perturbation and lifting results are provided for certain subhomogeneous -algebras.
For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable -manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable -manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients holds. The...
In this overview, we study how to reduce the index pairing for a fibre-product C*-algebra to the index pairing for the C*-algebra over which the fibre product is taken. As an example we analyze the case of suspensions and apply it to noncommutative instanton bundles of arbitrary charges over the suspension of quantum deformations of the 3-sphere.