The cohomology ring of free loop spaces.
Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.
, i,j ∈ 1,2,3, i ≠ j, of C*-epimorphisms assuming that it satisfies the cocycle condition. Then we show how to compute the K-groups of the multi-pullback C*-algebra of such a family, and exemplify it in the case of the triple-Toeplitz deformation of ℂP².
In this paper we prove a variety of results about the signature operator on Witt spaces. First, we give a parametrix construction for the signature operator on any compact, oriented, stratified pseudomanifold which satisfies the Witt condition. This construction, which is inductive over the ‘depth’ of the singularity, is then used to show that the signature operator is essentially self-adjoint and has discrete spectrum of finite multiplicity, so that its index—the analytic signature of —is well-defined....