Previous Page 6

Displaying 101 – 118 of 118

Showing per page

The Connes-Kasparov conjecture for almost connected groups and for linear p -adic groups

Jérôme Chabert, Siegfried Echterhoff, Ryszard Nest (2003)

Publications Mathématiques de l'IHÉS

Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.

The K-theory of the triple-Toeplitz deformation of the complex projective plane

Jan Rudnik (2012)

Banach Center Publications

π j i : B i B i j = B j i , i,j ∈ 1,2,3, i ≠ j, of C*-epimorphisms assuming that it satisfies the cocycle condition. Then we show how to compute the K-groups of the multi-pullback C*-algebra of such a family, and exemplify it in the case of the triple-Toeplitz deformation of ℂP².

The signature package on Witt spaces

Pierre Albin, Éric Leichtnam, Rafe Mazzeo, Paolo Piazza (2012)

Annales scientifiques de l'École Normale Supérieure

In this paper we prove a variety of results about the signature operator on Witt spaces. First, we give a parametrix construction for the signature operator on any compact, oriented, stratified pseudomanifold X which satisfies the Witt condition. This construction, which is inductive over the ‘depth’ of the singularity, is then used to show that the signature operator is essentially self-adjoint and has discrete spectrum of finite multiplicity, so that its index—the analytic signature of  X —is well-defined....

Currently displaying 101 – 118 of 118

Previous Page 6