Displaying 181 – 200 of 1491

Showing per page

Asymptotic spectral analysis of generalized Erdős-Rényi random graphs

Song Liang, Nobuaki Obata, Shuji Takahashi (2007)

Banach Center Publications

Motivated by the Watts-Strogatz model for a complex network, we introduce a generalization of the Erdős-Rényi random graph. We derive a combinatorial formula for the moment sequence of its spectral distribution in the sparse limit.

Asymptotic spectral analysis of growing graphs: odd graphs and spidernets

Daisuke Igarashi, Nobuaki Obata (2006)

Banach Center Publications

Two new examples are given for illustrating the method of quantum decomposition in the asymptotic spectral analysis for a growing family of graphs. The odd graphs form a growing family of distance-regular graphs and the two-sided Rayleigh distribution appears in the limit of vacuum spectral distribution of the adjacency matrix. For a spidernet as well as for a growing family of spidernets the vacuum distribution of the adjacency matrix is the free Meixner law. These distributions are calculated...

Automatic continuity of biorthogonality preservers between weakly compact JB*-triples and atomic JBW*-triples

María Burgos, Jorge J. Garcés, Antonio M. Peralta (2011)

Studia Mathematica

We prove that every biorthogonality preserving linear surjection from a weakly compact JB*-triple containing no infinite-dimensional rank-one summands onto another JB*-triple is automatically continuous. We also show that every biorthogonality preserving linear surjection between atomic JBW*-triples containing no infinite-dimensional rank-one summands is automatically continuous. Consequently, two atomic JBW*-triples containing no rank-one summands are isomorphic if and only if there exists a (not...

Automorphisms of central extensions of type I von Neumann algebras

Sergio Albeverio, Shavkat Ayupov, Karimbergen Kudaybergenov, Rauaj Djumamuratov (2011)

Studia Mathematica

Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as T = T a T ϕ , where T a ( x ) = a x a - 1 is an inner automorphism implemented by an element a ∈ E(M), and T ϕ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type I then every band preserving automorphism...

Banach manifolds of algebraic elements in the algebra (H) of bounded linear operatorsof bounded linear operators

José Isidro (2005)

Open Mathematics

Given a complex Hilbert space H, we study the manifold 𝒜 of algebraic elements in Z = H . We represent 𝒜 as a disjoint union of closed connected subsets M of Z each of which is an orbit under the action of G, the group of all C*-algebra automorphisms of Z. Those orbits M consisting of hermitian algebraic elements with a fixed finite rank r, (0< r<∞) are real-analytic direct submanifolds of Z. Using the C*-algebra structure of Z, a Banach-manifold structure and a G-invariant torsionfree affine...

Banach principle in the space of τ-measurable operators

Michael Goldstein, Semyon Litvinov (2000)

Studia Mathematica

We establish a non-commutative analog of the classical Banach Principle on the almost everywhere convergence of sequences of measurable functions. The result is stated in terms of quasi-uniform (or almost uniform) convergence of sequences of measurable (with respect to a trace) operators affiliated with a semifinite von Neumann algebra. Then we discuss possible applications of this result.

Banach-Saks properties in symmetric spaces of measurable operators

P. G. Dodds, T. K. Dodds, F. A. Sukochev (2007)

Studia Mathematica

We study Banach-Saks properties in symmetric spaces of measurable operators. A principal result shows that if the symmetric Banach function space E on the positive semiaxis with the Fatou property has the Banach-Saks property then so also does the non-commutative space E(ℳ,τ) of τ-measurable operators affiliated with a given semifinite von Neumann algebra (ℳ,τ).

Bergelson's theorem for weakly mixing C*-dynamical systems

Rocco Duvenhage (2009)

Studia Mathematica

We study a nonconventional ergodic average for asymptotically abelian weakly mixing C*-dynamical systems, related to a second iteration of Khinchin's recurrence theorem obtained by Bergelson in the measure-theoretic case. A noncommutative recurrence theorem for such systems is obtained as a corollary.

Currently displaying 181 – 200 of 1491