Previous Page 10

Displaying 181 – 190 of 190

Showing per page

Asymptotic spectral analysis of generalized Erdős-Rényi random graphs

Song Liang, Nobuaki Obata, Shuji Takahashi (2007)

Banach Center Publications

Motivated by the Watts-Strogatz model for a complex network, we introduce a generalization of the Erdős-Rényi random graph. We derive a combinatorial formula for the moment sequence of its spectral distribution in the sparse limit.

Asymptotic spectral analysis of growing graphs: odd graphs and spidernets

Daisuke Igarashi, Nobuaki Obata (2006)

Banach Center Publications

Two new examples are given for illustrating the method of quantum decomposition in the asymptotic spectral analysis for a growing family of graphs. The odd graphs form a growing family of distance-regular graphs and the two-sided Rayleigh distribution appears in the limit of vacuum spectral distribution of the adjacency matrix. For a spidernet as well as for a growing family of spidernets the vacuum distribution of the adjacency matrix is the free Meixner law. These distributions are calculated...

Automatic continuity of biorthogonality preservers between weakly compact JB*-triples and atomic JBW*-triples

María Burgos, Jorge J. Garcés, Antonio M. Peralta (2011)

Studia Mathematica

We prove that every biorthogonality preserving linear surjection from a weakly compact JB*-triple containing no infinite-dimensional rank-one summands onto another JB*-triple is automatically continuous. We also show that every biorthogonality preserving linear surjection between atomic JBW*-triples containing no infinite-dimensional rank-one summands is automatically continuous. Consequently, two atomic JBW*-triples containing no rank-one summands are isomorphic if and only if there exists a (not...

Automorphisms of central extensions of type I von Neumann algebras

Sergio Albeverio, Shavkat Ayupov, Karimbergen Kudaybergenov, Rauaj Djumamuratov (2011)

Studia Mathematica

Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as T = T a T ϕ , where T a ( x ) = a x a - 1 is an inner automorphism implemented by an element a ∈ E(M), and T ϕ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type I then every band preserving automorphism...

Currently displaying 181 – 190 of 190

Previous Page 10