Completely positive maps on Coxeter groups and the ultracontractivity of the q-Ornstein-Uhlenbeck semigroup
We use free probability techniques to compute spectra and Brown measures of some non-hermitian operators in finite von Neumann algebras. Examples include where uₙ and are the generators of ℤₙ and ℤ respectively, in the free product ℤₙ*ℤ, or elliptic elements of the form where and are free semicircular elements of variance α and β.
Let and be mutually commuting unital C* subalgebras of (). It is shown that and are C* independent if and only if for all natural numbers n, m, for all n-tuples A = (A₁, ..., Aₙ) of doubly commuting nonzero operators of and m-tuples B = (B₁, ..., Bₘ) of doubly commuting nonzero operators of , , where Sp denotes the joint Taylor spectrum.