Displaying 81 – 100 of 190

Showing per page

A projective central limit theorem and interacting Fock space representation for the limit process

Vitonofrio Crismale (2007)

Banach Center Publications

Accardi et al. proved a central limit theorem, based on the notion of projective independence. In this note we use the symmetric projective independence to present a new version of that result, where the limiting process is perturbed by the insertion of suitable test functions. Moreover we give a representation of the limit process in 1-mode type interacting Fock space.

A property of ergodic flows

Maria Joiţa, Radu-B. Munteanu (2014)

Studia Mathematica

We introduce a property of ergodic flows, called Property B. We prove that an ergodic hyperfinite equivalence relation of type III₀ whose associated flow has this property is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. We use Property B to construct a non-AT flow which-up to conjugacy-is built under a function with the dyadic odometer as base automorphism.

A recursion formula for the moments of the gaussian orthogonal ensemble

M. Ledoux (2009)

Annales de l'I.H.P. Probabilités et statistiques

We present an analogue of the Harer–Zagier recursion formula for the moments of the gaussian Orthogonal Ensemble in the form of a five term recurrence equation. The proof is based on simple gaussian integration by parts and differential equations on Laplace transforms. A similar recursion formula holds for the gaussian Symplectic Ensemble. As in the complex case, the result is interpreted as a recursion formula for the number of 1-vertex maps in locally orientable surfaces with a given number of...

A remark on p-convolution

Rafał Sałapata (2011)

Banach Center Publications

We introduce a p-product of algebraic probability spaces, which is the definition of independence that is natural for the model of noncommutative Brownian motions, described in [10] (for q = 1). Using methods of the conditionally free probability (cf. [4, 5]), we define a related p-convolution of probability measures on ℝ and study its relations with the notion of subordination (cf. [1, 8, 9, 13]).

A Reproducing Kernel and Toeplitz Operators in the Quantum Plane

Stephen Bruce Sontz (2013)

Communications in Mathematics

We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined...

Currently displaying 81 – 100 of 190