Previous Page 7

Displaying 121 – 139 of 139

Showing per page

Convolutions related to q-deformed commutativity

Anna Kula (2010)

Banach Center Publications

Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...

Covariance algebra of a partial dynamical system

Bartosz Kosma Kwaśniewski (2005)

Open Mathematics

A pair (X, α) is a partial dynamical system if X is a compact topological space and α: Δ→ X is a continuous mapping such that Δ is open. Additionally we assume here that Δ is closed and α(Δ) is open. Such systems arise naturally while dealing with commutative C *-dynamical systems. In this paper we construct and investigate a universal C *-algebra C *(X,α) which agrees with the partial crossed product [10] in the case α is injective, and with the crossed product by a monomorphism [22] in the case...

Covariant version of the Stinespring type theorem for Hilbert C*-modules

Maria Joiţa (2011)

Open Mathematics

In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.

Crossed products by Hilbert pro-C*-bimodules

Maria Joiţa, Ioannis Zarakas (2013)

Studia Mathematica

We define the crossed product of a pro-C*-algebra A by a Hilbert A-A pro-C*-bimodule and we show that it can be realized as an inverse limit of crossed products of C*-algebras by Hilbert C*-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-C*-bimodules over strongly Morita equivalent pro-C*-algebras are strongly Morita equivalent.

Cyclic homology and equivariant theories

Jean-Luc Brylinski (1987)

Annales de l'institut Fourier

In this article, we present two possible extensions of the classical theory of equivariant cohomology. The first, due to P. Baum, R. MacPherson and the author, is called the “delocalized theory". We attempt to present it in very concrete form for a circle action on a smooth manifold. The second is the cyclic homology of the crossed- product algebra of the algebra of smooth functions on a manifold, by the convolution algebra of smooth functions on a Lie group, when such Lie group act on the manifold....

Currently displaying 121 – 139 of 139

Previous Page 7