The centralizer under tensor product.
The aim of the present article is to introduce and investigate topological properties by operator. We obtain good stability properties for the density condition and the strong dual density condition by taking injective tensor products. Further we analyze the connection to (DF)-properties by operator.
In this paper we modify a construction due to J. Taskinen to get a Fréchet space F which satisfies the density condition such that the complete injective tensor product l2 x~eF'b does not satisfy the strong dual density condition of Bierstedt and Bonet. In this way a question that remained open in Heinrichs (1997) is solved.
Let H(Q) be the space of all the functions which are holomorphic on an open neighbourhood of a convex locally closed subset Q of CN, endowed with its natural projective topology. We characterize when the topology of the weighted inductive limit of Fréchet spaces which is obtained as the Laplace transform of the dual H(Q)' of H(Q) can be described by weighted sup-seminorms. The behaviour of the corresponding inductive limit of spaces of continuous functions is also investigated.
We prove some exact formulas for the E and K functionals for pairs of the type (X(A),l sub ∞ (B)) where X has the lattice property. These formulas are extensions of their well-known counterparts in the scalar valued case. In particular we generalize formulas by Pisier and by the present author.
We give conditions under which the functor projective limit is exact on the category of quotients of Fréchet spaces of L. Waelbroeck [18].
We disprove the existence of a universal object in several classes of spaces including the class of weakly Lindelöf Banach spaces.
It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on -manifolds and fundamental 4-forms in quaternionic manifolds are discussed.
The simple topological measures X* on a q-space X are shown to be a superextension of X. Properties inherited from superextensions to topological measures are presented. The homology groups of various subsets of X* are calculated. For a q-space X, X* is shown to be a q-space. The homology of X* when X is the annulus is calculated. The homology of X* when X is a more general genus one space is investigated. In particular, X* for the torus is shown to have a retract homeomorphic to an infinite product...