The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

On Erb's uncertainty principle

Hubert Klaja (2016)

Studia Mathematica

We improve a result of Erb, concerning an uncertainty principle for orthogonal polynomials. The proof uses numerical range and a decomposition of some multiplication operators as a difference of orthogonal projections.

On the numerical range of operators on locally and on H-locally convex spaces

Edvard Kramar (1993)

Commentationes Mathematicae Universitatis Carolinae

The spatial numerical range for a class of operators on locally convex space was studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider some additional properties of the numerical range on locally convex and especially on H -locally convex spaces.

On upper and lower bounds of the numerical radius and an equality condition

Takeaki Yamazaki (2007)

Studia Mathematica

We give an inequality relating the operator norm of T and the numerical radii of T and its Aluthge transform. It is a more precise estimate of the numerical radius than Kittaneh's result [Studia Math. 158 (2003)]. Then we obtain an equivalent condition for the numerical radius to be equal to half the operator norm.

Currently displaying 1 – 11 of 11

Page 1