The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Weighted shift operators on lp spaces.

Lucas Jódar (1986)

Stochastica

The analytic-spectral structure of the commutant of a weighted shift operator defined on a lp space (1 ≤ p < ∞) is studied. The cases unilateral, bilateral and quasinilpotent are treated. We apply the results to study certain questions related to unicellularity, strictly cyclicity and the existence of hyperinvariant subspaces.

Wold-type extension for N-tuples of commuting contractions

Marek Kosiek, Alfredo Octavio (1999)

Studia Mathematica

Let (T1,…,TN) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V1,…,VN) of contractions on a superspace K of ℋ such that each V j extends T j , j=1,…,N, and the N-tuple (V1,…,VN) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the V j need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])

Currently displaying 1 – 4 of 4

Page 1