Ein Äquikonvergenzsatz für eine Klasse von singulären Differentialoperatoren.
We define a spectrum for Lipschitz continuous nonlinear operators in Banach spaces by means of a certain kind of "pseudo-adjoint" and study some of its properties.
It is shown that a finite system T of matrices whose real linear combinations have real spectrum satisfies a bound of the form . The proof appeals to the monogenic functional calculus.